Mersey Park Primary School

Upper Key Stage Two Calculation Policy

KEY STAGE 2

In upper Key Stage 2, children build on secure foundations in calculation, and develop fluency, accuracy and flexibility in their approach to the four operations. They work with whole numbers and adapt their skills to work with decimals, and they continue to develop their ability to select appropriate, accurate and efficient operations.
Key language: decimal, column methods, exchange, partition, mental method, ten thousand, hundred thousand, million, factor, multiple, prime number, square number, cube number

Addition and subtraction: Children build on their

 column methods to add and subtract numbers with up to seven digits, and they adapt the methods to calculate efficiently and effectively with decimals, ensuring understanding of place value at every stage.Children compare and contrast methods, and they select mental methods or jottings where appropriate and where these are more likely to be efficient or accurate when compared with formal column methods.
Bar models are used to represent the calculations required to solve problems and may indicate where efficient methods can be chosen.

Multiplication and division: Building on their understanding, children develop methods to multiply up to 4 -digit numbers by single-digit and 2-digit numbers.
Children develop column methods with an understanding of place value, and they continue to use the key skill of unitising to multiply and divide by 10,100 and 1,000 .
Written division methods are introduced and adapted for division by single-digit and 2-digit numbers and are understood alongside the area model and place value. In Year 6, children develop a secure understanding of how division is related to fractions.
Multiplication and division of decimals are also introduced and refined in Year 6.

Fractions: Children find fractions of amounts, multiply a fraction by a whole number and by another fraction, divide a fraction by a whole number, and add and subtract fractions with different denominators. Children become more confident working with improper fractions and mixed numbers and can calculate with them. Understanding of decimals with up to 3decimal places is built through place value and as fractions, and children calculate with decimals in the context of measure as well as in pure arithmetic.
Children develop an understanding of percentages in relation to hundredths, and they understand how to work with common percentages: $50 \%, 25 \%, 10 \%$ and 1%.

Year 5 Subtraction			
Column subtraction with whole numbers	Use place value equipment to understand where exchanges are required. 2,250-1,070 \square	Represent the stages of the calculation using place value equipment on a grid alongside the calculation, including exchanges where required.$15,735-2,582=13,153$TTh Th H T O 0000000 $00 \varnothing \varnothing$ $\qquad$$\qquad$ Subtract the $100 \mathrm{~s}, 1,000 \mathrm{~s}$ and $10,000 \mathrm{~s}$.TTh Th H T 0 $0 \varnothing \varnothing$ $\varnothing \varnothing \varnothing \varnothing \varnothing$ $\varnothing \varnothing \varnothing \varnothing \varnothing O O \varnothing \varnothing$ $\varnothing \varnothing \varnothing \varnothing \varnothing$ $$	Use column subtraction methods with exchange where required. $62,097-18,534=43,563$
Checking strategies and representing subtractions		Bar models represent subtractions in problem contexts, including 'find the difference'.	Children can explain the mistake made when the columns have not been ordered correctly. Use approximation to check calculations. I calculated $18,000+4,000$ mentally to check my subtraction.

Year 5 Multiplication			
Understanding factors	Use cubes or counters to explore the meaning of 'square numbers'. 25 is a square number because it is made from 5 rows of 5 . Use cubes to explore cube numbers. 8 is a cube number.	Use images to explore examples and nonexamples of square numbers. $\begin{aligned} & 8 \times 8=64 \\ & 8^{2}=64 \end{aligned}$ 12 is not a square number, because you cannot multiply a whole number by itself to make 12.	Understand the pattern of square numbers in the multiplication tables. Use a multiplication grid to circle each square number. Can children spot a pattern?
Multiplying by 10, 100 and 1,000	Use place value equipment to multiply by 10,100 and 1,000 by unitising.	Understand the effect of repeated multiplication by 10 .	Understand how exchange relates to the digits when multiplying by 10,100 and 1,000. $\begin{aligned} & 17 \times 10=170 \\ & 17 \times 100=17 \times 10 \times 10=1,700 \\ & 17 \times 1,000=17 \times 10 \times 10 \times 10=17,000 \end{aligned}$

Multiplying by multiples of 10, 100 and 1,000	Use place value equipment to explore multiplying by unitising. 5 groups of 3 ones is 15 ones. 5 groups of 3 tens is 15 tens. So, I know that 5 groups of 3 thousands would be 15 thousands.	Use place how to 1,000. $4 \times 3=$ 4×300	value equipm tiply by multip 1,200	ment to represent iples of 10, 100 and $\begin{aligned} & 6 \times 4=24 \\ & 6 \times 400=2,400 \end{aligned}$	Use known fac $\begin{aligned} & 5 \times 4=20 \\ & 5 \times 40=200 \\ & 5 \times 400=2,00 \\ & 5 \times 4,000-20 \\ & 5,000 \times 4=20 \end{aligned}$	and unitisi 00 00	multiply.
Multiplying up to 4-digit numbers by a single digit	Explore how to use partitioning to multiply efficiently.$8 \times 17=?$	Represent multiplications using place value equipment and add the 1 s , then 10 s , then 100 s , then $1,000 \mathrm{~s}$.			Use an area model and then add the parts.		
		H	T	0	$5 \quad 100 \times 5=500$	$60 \times 5=300$	$3 \times 5=15$
	0000000000 0000000		(10)(10)(10)(10) (10)	(1)(1)	Use a column	ultiplication,	luding any
			(10)(10)(10)(10) (10)	(1)(1)	required exchan	ges.	
	$\left\|\begin{array}{l\|l\|} \hline 000000000 \\ 0000000000 \end{array}\right\| \begin{aligned} & 000000 \\ & 0000000 \end{aligned}$	@	(10)(10)(10)(10) (10)	(1)(1)	$\begin{array}{r} 136 \\ \times \quad 6 \end{array}$		
	$8 \times 10=80$ $8 \times 7=56$	®	(10)(10)(10)(10) (10)	(1)(1)	$\begin{array}{c\|c} \hline 8 & 1 \quad 6 \\ \hline 2 \quad 3 \end{array}$		
	$80+56=136$	0	$\begin{aligned} & \text { (10)(10)(10)(10)(10 } \\ & \text { (10) } \\ & \hline \end{aligned}$	(1) (1)			
	So, $8 \times 17=136$						

Multiplying 2digit numbers by 2-digit numbers	Partition one number into 10 s and 1s, then add the parts. $23 \times 15=?$ TITIT $3 \times 15=45$ There are 345 bottles of milk in total. $23 \times 15=345$	Use 28 10 m 5 m 28	area model = ? 20 m $20 \times 10=200 \mathrm{~m}^{2}$ $20 \times 5=100 \mathrm{~m}^{2}$ $5=420$	add the parts.	Use column multiplication, ensuring understanding of place value at each stage.
Multiplying up to 4-digits by 2-digits			area model 1.716 1,716 boxes of cereal $12=1,716$	add the parts. \square	Use column multiplication, ensuring understanding of place value at each stage. Progress to include examples that require multiple exchanges as understanding, confidence and fluency build. $1,274 \times 32=?$ First multiply 1,274 by 2.

Year 5 Division			
Understanding factors and prime numbers	Use equipment to explore the factors of a given number. $\because \circ \circ \circ \circ \circ$ $24 \div 3=8$ $24 \div 8=3$ 8 and 3 are factors of 24 because they divide 24 exactly. $24 \div 5=4$ remainder 4 $\because 0 \circ \bigcirc \bigcirc$ 5 is not a factor of 24 because there is a remainder.	Understand that prime numbers are numbers with exactly two factors. $\begin{aligned} & 13 \div 1=13 \\ & 13 \div 2=6 r 1 \\ & 13 \div 4=4 r 1 \end{aligned}$ 1 and 13 are the only factors of 13. 13 is a prime number.	Understand how to recognise prime and composite numbers. I know that 31 is a prime number because it can be divided by only 1 and itself without leaving a remainder. I know that 33 is not a prime number as it can be divided by 1,3,11and 33 . I know that 1 is not a prime number, as it has only 1 factor.
Understanding inverse operations and the link with multiplication, grouping and sharing	Use equipment to group and share and to explore the calculations that are present. I have 28 counters. I made 7 groups of 4. There are 28 in total. I have 28 in total. I shared them equally into 7 groups. There are 4 in each group. I have 28 in total. I made groups of 4. There are 7 equal groups.	Represent multiplicative relationships and explore the families of division facts. $\begin{aligned} & 60 \div 4=15 \\ & 60 \div 15=4 \end{aligned}$	Represent the different multiplicative relationships to solve problems requiring inverse operations. $12 \div 3=\square$ $12 \div$ \square \square $\times 3=12$ \square $\div 3=12$ Understand missing number problems for division calculations and know how to solve them using inverse operations. $\begin{aligned} & 22 \div ?=2 \\ & 22 \div 2=? \\ & ? \div 2=22 \\ & ? \div 22=2 \end{aligned}$

	$150 \div 30=5$	12 ones divided into groups of 4. There are 3 groups. 12 hundreds divided into groups of 4 hundreds. There are 3 groups. $1200 \div 400=3$	
Dividing up to four digits by a single digit using short division	Explore grouping using place value equipment. $268 \div 2=?$ There is 1 group of 2 hundreds. There are 3 groups of 2 tens. There are 4 groups of 2 ones. $264 \div 2=134$	Use place value equipment on a place value grid alongside short division. The model uses grouping. A sharing model can also be used, although the model would need adapting. Lay out the problem as a short division. There is 1 group of 4 in 4 tens. There are 2 groups of 4 in 8 ones. Work with divisions that require exchange.	Use short division for up to 4-digit numbers divided by a single digit. $\begin{aligned} & \begin{array}{rrrr} 0 & 5 & 5 & 6 \\ 7 & 3^{3} 8 & { }^{3} q & 42 \end{array} \\ & 3,892 \div 7 \end{aligned}$ Use multiplication to check. $\begin{aligned} & 556 \times 7=? \\ & 6 \times 7=42 \\ & 50 \times 7=350 \\ & 500 \times 7=3500 \\ & 3,500+350+42=3,892 \end{aligned}$

		 1.5 is 1 one and 5 tenths. This is equivalent to 10 tenth hundredths. 10 tenths divided by 10 is 1 50 hundredths divided by 10 hundredths. 1.5 divided by 10 is 1 tenth hundredths. $1 \cdot 5 \div 10=0.15$	and 50 th. 5 5	O \bullet Tth Hth Thth 8 \bullet 5 0 \bullet 0 \rightarrow $8.5 \div 100=0.085$
Understanding the relationship between fractions and division	Use sharing to explore the link between fractions and division. 1 whole shared between 3 people. Each person receives one-third.	Use a bar model and other representations to show the fractions and division.	tion between CALCULATION $1 \div 3=\frac{1}{3}$	Use the link between division and fractions to calculate divisions. $\begin{aligned} & 5 \div 4=\frac{5}{4}=1 \frac{1}{4} \\ & 11 \div 4=\frac{11}{4}=2 \frac{3}{4} \end{aligned}$

Year Five
 Calculation and Fluency

Number, Place Value and Number Facts	- Pupils should recogni - compose - and decompose nu - Pupils should also ap hundredth), for exam $\begin{aligned} & -8+6=14 \\ & 0.8+0.6=1.4 \\ & 0.08+0.06=0.14 \\ & -3 \times 4=12 \\ & 0.3 \times 4=1.2 \\ & 0.03 \times 4=0.12 \end{aligned}$

- Initially place value counters and partitioning diagrams can be used. However, these must not be relied upon. Pupils must be able to calculate by verbalising the relationship:
- " 8 plus 6 is equal to 14 , so 8 tenths plus 6 tenths is equal to 14 tenths."
- "14 tenths is equal to 1 one and 4 tenths."
- Pupils should be developing fluency in both formal written and mental methods for addition and subtraction.
- Mental methods can include jottings to keep track of calculation, or language structures as exemplified above.
- Pupils should select the most efficient method to calculate depending on the numbers involved.

Addition and Subtraction

- Pupils should also extend columnar addition and subtraction methods to numbers with up to 2 decimal places.
- Pupils must be able to add 2 or more numbers using columnar addition, including calculations whose addends have different numbers of digits.

$274 \cdot 1$
$+\quad 95 \cdot 8$
$469 \cdot 9$
1

$47 \cdot 52$
$+\quad 81.7$

129.22
1

- For calculations with more than 2 addends, pupils should add the digits within a column in the most efficient order.
- For the third example above, efficient choices could include:
- beginning by making 10 in the tenths column
- making double-6 in the ones column
- Pupils must be able to subtract one number from another using columnar subtraction, including numbers with up to 2 decimal places.
- They should be able to apply the columnar method to calculations presented as, for example, 21.8-9.29 or 58-14.69, where the subtrahend has more decimal places than the minuend.
- Pupils must also be able to exchange through 0 .

	- Pupils should make sensible decisions about how and when to use columnar methods. - For example, when subtracting a decimal fraction from a whole number, pupils may be able to use their knowledge of complements, avoiding the need to exchange through zeroes. - For example, to calculate 8 - 4.85 pupils should be able to work out that the decimal complement to 5 from 4.85 is 0.15 , and that the total difference is therefore 3.15.
Secure Fluency in Multiplication and Division Facts	- Pupils must have secure fluency in multiplication table facts, and corresponding division facts. - Pupils will need regular practice of multiplication tables and associated division facts (including calculating division facts with remainders) to maintain the fluency they achieved by the end of Year 4. - Pupils should also maintain fluency in related calculations including: - scaling known multiplicative facts by 10 or 100 - multiplying and dividing by 10 and 100 for calculations that involve whole numbers only. - They should develop fluency in: - scaling multiplicative facts by one-tenth or one-hundredth - multiplying and dividing by 10 and 100, for calculations that bridge 1.

Multiply using a formal written method

- Pupils should be able to multiply any whole number with up to 4 digits by any one-digit number using a formal written method.
- Pupils must be able to multiply whole numbers with up to 4 digits by one-digit numbers using short multiplication.
24
342
2,371
\times
6
\times
7
\times

		4
9,4	8	4
1	2	

- Pupils should be fluent in interpreting contextual problems to decide when multiplication is the appropriate operation to use, including as part of multi-step problems.
- Pupils should use short multiplication when appropriate to solve these calculations.

Divide using a
formal written method

- Pupils should be able to divide a number with up to 4 digits by a one-digit number using a formal written method, and interpret remainders appropriately for the context.
- Pupils must be able to divide numbers with up to 4 digits by one-digit numbers using short division, including calculations that involve remainders.
- Pupils do not need to be able to express remainders arising from short division, using proper fractions or decimal fractions.

- Pupils should be fluent in interpreting contextual problems to decide when division is the appropriate operation to use, including as part of multi-step problems.
- Pupils should use short division when appropriate to solve these calculations.
- For contextual problems, pupils must be able to interpret remainders appropriately as they learnt to do in Year 4

Year 6 Subtraction			
Comparing and selecting efficient methods	Use counters on a place value grid to represent subtractions of larger numbers.	Compare subtraction methods alongside place value representations. Use a bar model to represent calculations, including 'find the difference' with two bars as comparison. puzzle book	Compare and select methods. Use column subtraction when mental methods are not efficient. Use two different methods for one calculation as a checking strategy. Use column subtraction for decimal problems, including in the context of measure.
Subtracting mentally with larger numbers		Use a bar model to show how unitising can support mental calculations. 950,000-150,000 That is 950 thousands - 150 thousands \square 150 800 So, the difference is 800 thousands. $950,000-150,000=800,000$	Subtract efficiently from powers of 10 . $10,000-500=?$

Year 6 Multiplication			
Multiplying up to a 4-digit number by a single digit number	Use equipment to explore multiplications. 4 groups of 2,345 This is a multiplication: $\begin{array}{\|l\|l} 4 \times 2,345 \\ 2,345 \times 4 \end{array}$	Use place value equipment to compare methods. $4 \times 3,0004 \times 2004 \times 204 \times 5$ $12,000+800+80+20=12,900$	Understand area model and short multiplication. Compare and select appropriate methods for specific multiplications.

Year 6 Division			
Understanding factors	Use equipment to explore different factors of a number. $24 \div 4=6$ $30 \div 4=7$ remainder 2 4 is a factor of 24 but is not a factor of 30 .	Recognise prime numbers as numbers having exactly two factors. Understand the link with division and remainders.	Recognise and know primes up to 100. Understand that 2 is the only even prime, and that 1 is not a prime number.
Dividing by a single digit	Use equipment to make groups from a total. $-0 \cdot 0 \cdot 0 \cdot 0 \cdot 0 \cdot 0$ $-00 \bullet \bullet \bullet \bullet 000 \cdot 0$ $-00 \bullet 0 \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ -0000000000 There are 78 in total. There are 6 groups of 13. There are 13 groups of 6 .	H T O (®) 10 $\begin{array}{c}\text { How many } \\ \text { groups of } 6 \\ \text { are in I3 tens? }\end{array}$ $6 \longdiv { 1 } \begin{array} { l } { 0 } \\ { 1 } \end{array}$ 2	Use short division to divide by a single digit. $6 \longdiv { 1 \text { '3 2 } }$ $0 \quad 2$ $6 \longdiv { 1 \text { '3'2 } }$ $0 \quad 2 \quad 2$ $6 \longdiv { 1 } \begin{array} { r } { 1 } \\ { 1 } \end{array} 3 ^ { \prime } 2$ Use an area model to link multiplication and division. $6 \times ?=132$ $132=120+12$ $132 \div 6=20+2=22$

Dividing by a 2-digit number using factors	Understand that division by factors can be used when dividing by a number that is not prime.	Use factors and repeated division. $1,260 \div 14=?$ 1,260 \square $\begin{aligned} & 1,260 \div 2=630 \\ & 630 \div 7=90 \\ & 1,260 \div 14=90 \end{aligned}$	Use factors and repeated division where appropriate. $2,100 \div 12=?$ $2.100 \longrightarrow \div 2 \longrightarrow$ $2,100 \longrightarrow \div 6 \rightarrow 2 \rightarrow$ $2,100 \longrightarrow \div 3 \rightarrow+4 \longrightarrow$ $2,100 \longrightarrow \div 4 \longrightarrow \div 3 \longrightarrow$ $2,100 \rightarrow \div 3 \rightarrow+2 \rightarrow+$
Dividing by a 2-digit number using long division	Use equipment to build numbers from groups. 182 divided into groups of 13. There are 14 groups.	Use an area model alongside written division to model the process. $377 \div 13=?$ 13 \square 13 \square 13 $377 \div 13=29$	Use long division where factors are not useful (for example, when dividing by a 2-digit prime number). Write the required multiples to support the division process. $377 \div 13=?$

			A slightly different layout may be used, with the division completed above rather than at the side. $$ 21 3 7 9 $-\begin{array}{r}630 \\ \hline 168\end{array}$ -168 Divisions with a remainder explored in problem-solving contexts.
Dividing by 10,100 and 1,000	Use place value equipment to explore division as exchange. Exchange each 0.1 for ten 0.01 s . Divide 20 counters by 10 . 0.2 is 2 tenths. 2 tenths is equivalent to 20 hundredths. 20 hundredths divided by 10 is 2 hundredths.	Represent division to show the relationship with multiplication. Understand the effect of dividing by 10,100 and 1,000 on the digits on a place value grid. Understand how to divide using division by 10,100 and 1,000 . $12 \div 20=?$ \square \square	Use knowledge of factors to divide by multiples of 10,100 and 1,000 . $40 \div 50=$ \square $40 \rightarrow \div \div \div+10 \rightarrow ?$ $\begin{aligned} & 40 \div 5=8 \\ & 8 \div 10=0 \cdot 8 \end{aligned}$ So, $40 \div 50=0.8$

Dividing decimals	Use place value equipment to explore division of decimals. 8 tenths divided into 4 groups. 2 tenths in each group.	Use a bar model to represent divisions.				Use short division to divide decimals with up to 2 decimal places.$\begin{array}{r\|r} 8 & 4 \cdot 24 \\ 0 \cdot \\ 8 & 4 \cdot 4^{2} \quad 4 \\ 0 \cdot 5 \\ 8 & 4 \cdot{ }^{4} 2{ }^{2} 4 \\ 8 \cdot 5 \quad 3 \\ 8 & 0 \cdot{ }^{4} 2{ }^{2} 4 \end{array}$
		?	?	$?$?	
		$4 \times 2=$			$=2$	
		So, $4 \times$	$=0 \cdot 8$		$4=0.2$	

Year Six

Calculation and Fluency

Number, Place Value and Number Facts

- Pupils should understand the relationship between powers of 10 from 1 hundredth to 10 million, and use this to make a given number 10, 100, 1,000, 1 tenth, 1 hundredth or 1 thousandth times the size (multiply and divide by 10,100 and 1,000).
- Pupils should recognise the place value of each digit in numbers up to 10 million, including decimal fractions. This includes being able to:
- compose
- and decompose numbers up to 10 million using standard and non-standard partitioning.
- Pupils should develop fluency in multiplying numbers by 10,100 and 1,000 to give products with up to 7 digits, and dividing up to 7 -digit numbers by 10, 100 and 1,000.
- Pupils should be able to carry out calculations based on their understanding of place value as well as non-standard partitioning, for example:

- Pupils should also be able to apply their place-value knowledge for larger numbers to known additive and multiplicative number facts, including scaling both factors of a multiplication calculation:
$-8+6=14$
$-800,000+600,000=1,400,000$
$-3 \times 4=12$
$-3 \times 40,000=120,000$

	$-300 \times 400=120,000$ - Representations such as place-value counters, partitioning diagrams and Gattegno charts can be used initially to help pupils understand calculation strategies and make connections between known facts and related calculations. - However, pupils should not rely on such representations for calculating. - Pupils should maintain fluency in both formal written and mental methods for calculation. - Mental methods can include jottings to keep track of calculations. - Pupils should select the most efficient method to calculate depending on the numbers involved. - Pupils should learn to check their calculations with a calculator so that they know how to use one.
Addition and Subtraction: Formal Written Methods	- Pupils should continue to practise adding whole numbers with up to 4 digits, and numbers with up to 2 decimal places, using columnar addition. - This should include calculations with more than 2 addends, and calculations with addends that have different numbers of digits. - For calculations with more than 2 addends, pupils should add the digits within a column in the most efficient order. - For the second example above, efficient choices could include: - beginning by making 10 in the ones column - making double-6 in the hundreds column.

- Pupils should continue to practise using columnar subtraction for numbers with up to 4 digits, and numbers with up to 2 decimal places.
- This should include calculations where the minuend and subtrahend have a different number of digits or decimal places, and those involving exchange through 0 .

- Pupils should make sensible decisions about how and when to use columnar methods.
- For example, when subtracting a decimal fraction from a whole number, pupils may be able to use their knowledge of complements, avoiding the need to exchange through zeroes.
- For example, to calculate $8-4.85$ pupils should be able to work out that the decimal complement to 5 from 4.85 is 0.15 , and that the total difference is therefore 3.15 .
- Pupils should learn to check their columnar addition and subtraction calculations with a calculator so that they know how to use one.

Multiplication

- Pupils should continue to practise multiplying any whole number with up to 4 digits by any 1-digit number using short multiplication.
- Pupils should also learn to use short multiplication to multiply decimal numbers by 1-digit numbers, and use this to solve contextual measures problems, including those involving money.

			2	4			3	4	2		$5 \cdot 35$			
	\times			6	\times				7	\times				4
			4				3	9			2	1.	4	0
			2				2	1				1	2	

- Pupils should be able to multiply a whole number with up to 4 digits by a 2-digit whole number by applying the distributive property of multiplication.

$$
\begin{aligned}
124 \times 26 & =124 \times 20+124 \times 6 \\
& =124 \times 2 \times 10+124 \times 6 \\
& =2,480+744 \\
& =3,224
\end{aligned}
$$

- Pupils should be able to represent this using the formal written method of long multiplication, and explain the connection to the partial products resulting from application of the distributive law.
1

1 | 1 | 2 | 4 |
| ---: | ---: | ---: |
| \times | 2 | 6 |
| 7 | 4 | 4 |
| 2, | 4 | 8 | 0

- Pupils should be fluent in interpreting contextual problems to decide when multiplication is the appropriate operation to use, including as part of multi-step problems.

	- Pupils should use short or long multiplication as appropriate to solve these calculations. - Pupils should learn to check their short and long multiplication calculations with a calculator so that they know how to use one.
Division	- Pupils should continue to practise dividing any whole number with up to 4 digits by a 1 -digit number using short division, including with remainders. - Pupils should also learn to use short division to express remainders as a decimal fraction.
	$5 \longdiv { 8 6 { } ^ { 3 } 2 }$ 619 $8 \longdiv { 4 , 9 { } ^ { 1 } { } ^ { 7 } 2 }$ $4 \longdiv { 2 7 \cdot 2 5 }$ - For contextual problems, pupils must be able to interpret remainders appropriately as they learnt to do in Year 4. - This should be extended to making an appropriate decision about how to represent the remainder. "4 friends equally share the cost of a $£ 109$ meal. How much does each of them pay?" - Pupils should recognise that an answer of $£ 27$ remainder 1 is not helpful in this context, and that they need to express the answer as a decimal fraction (£27.25) to provide a sufficient answer to the question. - Pupils should also be able to divide any whole number with up to 4 digits by a 2-digit number, recording using either short or long division. - Pupils are likely to need to write out multiples of the divisor to carry out these calculations and can do this efficiently using a ratio table.

Glossary

Addend	a number which is added to another
Commutative	involving the condition that a group of quantities connected by operators gives the same result whatever the order of the quantities involved, e.g. $a \times b=b \times a$
Columnar figures or other information) arranged vertically	
Dividend	a number to be divided by another number
Minuend	a quantity or number from which another is to be subtracted
Quotient	a result obtained by dividing one quantity by another.
Subtrahend	a quantity or number to be subtracted from another.

Gattegno charts

